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SUMMARY

In this paper, the domain-free discretization method (DFD) is extended to simulate the three-dimensional
compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that
the discrete form of governing equations at an interior point may involve some points outside the
solution domain. The functional values at the exterior-dependent points are updated at each time step by
extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the
simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help
of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which
the local DFD can be easily implemented for the three-dimensional case. Geometry-adaptive tetrahedral
mesh is employed for three-dimensional calculations. Finally, we validate the DFD method for three-
dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6
wing. Comparison with the reference experimental data and numerical results on boundary-conforming
grid was displayed and the results show that the present DFD results compare very well with the reference
data. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In [1], Shu and Fan proposed a domain-free discretization (DFD) method to solve partial differential
equations (PDEs) on irregular domains. So far, the DFD method has been successfully applied to
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LOCAL DOMAIN-FREE DISCRETIZATION METHOD 971

simulate two-dimensional incompressible, compressible, inviscid, and viscous flows around fixed
and moving bodies [2–5]. This paper is the first endeavor to present the local DFD method for
the simulation of three-dimensional inviscid flows.

DFD is inspired from the analytical method. It is well known that the analytical method takes
two separate steps to get the closed-form solution of a PDE. In the first step, a general solution
is pursued, which depends only on the given PDE. Then in the second step, the expression of the
general solution is substituted into boundary conditions to determine the unknown coefficients in
the general solution. Clearly, the solution domain is only involved in the second step when boundary
conditions are implemented. In contrast, the conventional numerical method solves the PDE in
just one step, in which the PDE is discretized on the solution domain with proper implementation
of boundary conditions. We can see clearly that the discretization of the PDE in a numerical
method is directly coupled with boundary conditions and thus is problem dependent. To overcome
the drawbacks of conventional numerical methods that strongly couple the PDE with the solution
domain, the DFD method was developed from the hint of the analytical method.

In the DFD, the implementation of boundary conditions and the discretization of the PDE are
treated separately as in the analytical method. The discrete form of the PDE at a point inside the
solution domain may involve some points outside the domain, which serves as the role to implement
the boundary condition. The key process in the DFD method is to evaluate the functional values at
the points outside the solution domain. The evaluation can be done from the ‘solution-extension’.
As we know, the smooth solution of a PDE inside the solution domain satisfies the PDE not only
at the interior points, but also at the exterior points. Thus, we can simply substitute the coordinates
of exterior points into the closed-form solution to obtain the functional values. The closed-form
solution is usually unknown for the case of doing numerical computations, but it is possible
to get some approximate form of the solution in the local region, for example, along a mesh
line.

In the earlier applications of DFD [1–3], the approximate form of solution is pursued along
the whole mesh line that only involves two boundary points. This way is not suitable for more
complex domains. To make the method more general, the local DFD was developed in [4, 5]. In the
local DFD, the low-order schemes are adopted for spatial discretization and also for approximate
form of the solution near the wall boundary. In [5], the local DFD method was applied to two-
dimensional compressible Euler and Navier–Stokes equations in conservative form. The functional
values at the exterior-dependent points are updated at each time step by the extrapolation along
the boundary normal direction in conjunction with wall boundary conditions and the simplified
momentum equation in the vicinity of the wall. The functional values at the exterior points are
computed from the current values of flow variables at some interior associated points or some
values of the known body movement.

As described above, the DFD method belongs to non-boundary-conforming methods since a
solid wall can be immersed on the grid, usually the Cartesian grid. In recent years, non-boundary-
conforming numerical methods are attracting a lot of attention because they eliminate the tedious
task of mesh generation for complex geometry required by classical boundary-conforming methods
and can simulate flows around multi-bodies with large deformations and arbitrary movements in
a straightforward manner. For compressible flow simulations, the Cartesian cut-cell method and
the ghost-cell method are the widely used two approaches among the non-boundary-conforming
methods.

In the Cartesian cut-cell approach, the Cartesian grid cells that intersect with the immersed
body are reconstructed so that the local boundary conformity is achieved. This approach allows
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972 C. H. ZHOU AND C. SHU

boundary conditions on a solid wall to be imposed in a manner similar to that used in traditional
boundary-conforming methods. A difficulty encountered in the implementation arises from the
large number of possible intersections between the fixed grid and body surface, leading to the
formation of various irregular cells. Furthermore, the generation of irregular cells with very
small volume can impact the conservation and stability properties of the method. This is the
well-known small-cell problem for cut-cell method, which has been addressed by merging the
small control volumes with nearby larger ones proposed by Quirk [6] or hybridizing the conser-
vative discretization with a stable non-conservative discretization proposed by Collela et al.
[7]. Recent work on successful applications of the Cartesian cut-cell method can be found in
[7–10].

The crux of ghost-cell method proposed by Dadone and Grossman in [11] is the curvature-
corrected symmetry technique developed for body-fitted grids. The method introduces ghost cells
near the wall boundary, the flow variables at the centers of which are evaluated according to an
assumed flow-field model in the vicinity of the wall. The assumed model consists of a vortex flow
that satisfies the normal momentum equation and the non-penetration condition. This flow-field
model locally enforces symmetry conditions for entropy and total enthalpy along a normal to the
body surface. In the ghost-cell methodology, flow variables at all centers exterior to the body are
computed with fluxes at the surrounding cell edges and there is no need for special treatment
corresponding to cut cells. To avoid grid clustering near the body to be maintained to the far-
field boundary, a far-field coarsening based on iblanking approach was introduced to preserve the
structured nature of the Cartesian grid [12]. Recently, the ghost-cell method was applied for the
calculation of three-dimensional inviscid flows around fixed boundaries [12].

Apart from the non-boundary-conforming methods, the so-called mesh free or meshless methods
should also be mentioned. This class of methods reduces the high cost of mesh generation by
completely discarding the pre-specified mesh connectivity in the process of spatial discretization.
The mesh-free methods can be roughly grouped into two categories. One is based on the polynomial
approximation [13, 14], and the other is to use the radial basis functions (RBFs) as interpolants
[15–17]. The difference between the DFD method and a mesh-free method is very clear. The
DFD method provides a strategy for spatial discretization. It still needs a numerical method
to discretize the spatial derivatives. The key in the DFD method is that the discrete form of
PDE may involve some points outside the solution domain, where the functional values are
evaluated by the local solution forms. In contrast, the mesh-free method constructs functional
approximation or interpolation from information at a set of scattered nodes within the solution
domain.

The DFD method has already been successfully applied to solve various two-dimensional flows.
It can be easily applied for problems with complex geometry and moving boundary. In this paper,
we extend this method to simulate the three-dimensional compressible flows governed by Euler
equations. We adopt the concept of ‘osculating plane’ introduced in [18] and modified by Dadone
and Grossman in [12]. With this concept, the two-dimensional DFD can be easily extended to
the three-dimensional case. Owing to their flexibility, tetrahedral meshes are employed for three-
dimensional calculations. At the beginning, we generate an initial tetrahedral mesh from hexahedral
cells of a coarse Cartesian mesh that is independent of the geometry. The finally used tetrahedral
mesh is obtained by refining the initial mesh gradually from the body surface to the farfield. To
validate the local DFD method for three-dimensional compressible inviscid flow simulations, the
transonic flows around the ONERA M6 wing were simulated, and the obtained numerical results
were compared with available data in the literature.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:970–986
DOI: 10.1002/fld



LOCAL DOMAIN-FREE DISCRETIZATION METHOD 973

2. GOVERNING EQUATIONS

Using a Cartesian coordinate system, the three-dimensional Euler equations in conservative form
for compressible inviscid flows can be written as

�w
�t

+ �f
�x

+ �g
�y

+ �h
�z

=0 (1)

where w is the vector of conservative variables, and f, g, h are the convective flux vectors. w, f,
g, and h are given by
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(2)

In (2), � represents the fluid density, u, v, and w are the Cartesian components of the velocity, E
is the total energy, and p is the pressure which can be calculated from the following equation of
state for a perfect gas:

p=�(�−1)

(
E− u2+v2+w2

2

)
(3)

where � is the ratio of specific heats of fluid and taken as 1.4 for air.

3. SPATIAL DISCRETIZATION EMPLOYED IN DFD

As described in the introduction, in the DFD method, the wall boundary can be superimposed
upon the computational mesh. We suppose that �⊂ R3 is a connected open set containing a body
�, and denote the boundary of � by �. With h a space discretization step, a tetrahedrization Th
of �̄ is introduced.

DFD is a discretization strategy. Its essence is that the discrete form of governing equation
can involve some points outside the solution domain. It still needs a numerical approach to do
discretization and transfer the differential equation into a discrete form. The spatial discretization
employed here is the direct three-dimensional extension of the two-dimensional Galerkin finite
element approach proposed by Mavriplis and Jameson in [19]. The procedure begins by storing
flow variables at the mesh vertices, and piecewise linear flux functions are used over the individual
tetrahedra. Let F denote the convective flux tensor, the Cartesian components of which are f, g,
and h. The Euler equations can be rewritten in the vector notation as

�w
�t

+∇ ·F=0 (4)
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Multiplying by a test function � and integrating over the domain yields the following Galerkin
formulation:

�
�t

∫ ∫ ∫
�

�wd�+
∫ ∫ ∫

�
�∇ ·Fd�=0 (5)

Integrating the flux integral by parts gives

�
�t

∫ ∫ ∫
�

�wd�=
∫ ∫ ∫

�
F ·∇�d�−

∫ ∫
�
n·F�d� (6)

where n is the outward normal unit vector at �. In order to evaluate the flux balance at each vertex
P , � is taken as a piecewise linear function which is equal to 1 at P and vanishes at all other
vertices. Therefore, the integrals in the above equation are nonzero only over the tetrahedrons that
contain the vertex P and thus define the influence domain of node P . Evaluating the flux integral
and employing the concept of a lumped mass matrix while integrating the term on the left-hand
side (LHS) of (6), one obtains

�P
�wP

�t
=

n∑
e=1

FA+FB +FC

3
·�SABC (7)

In the above formulation, the summation is over all the tetrahedra in the influence domain of
P and �p represents the volume of the domain. As illustrated in Figure 1, �SABC represents
the directed (normal) triangle area of the face of each tetrahedron on the outer boundary of the
influence domain. FA, FB , and FC are the convective fluxes at the three vertices of this triangle.

The domain � is an auxiliary domain and the solution domain is �\�. In this work, the boundary
conditions at � are classical and a Stegger–Warming flux splitting scheme [20] is used for in- and
out-flow boundaries.

Here, we should indicate that there is no imposition of wall boundary conditions in the spatial
discretization and the discrete form of the governing equations is irrelevant to the solution domain
according to the concept of DFD. The wall boundary conditions will be implemented via evaluating
the flow variables at exterior-dependent points as discussed in Section 5. This is the main difference
from the conventional approaches.

A

B
C

P

Figure 1. Directed area of influence-domain-boundary face of a tetrahedron.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:970–986
DOI: 10.1002/fld



LOCAL DOMAIN-FREE DISCRETIZATION METHOD 975

4. ARTIFICIAL DISSIPATION AND TIME MARCHING

The spatial discretization based on Galerkin finite element approach corresponds to central differ-
encing in structured mesh topology. The artificial dissipation operator proposed by Jameson et al.
in [21] is adopted to prevent oscillations in the vicinity of a shock and damp high frequency
errors. For completeness, a brief description of the construction of this operator is given below. It
is a blend of undivided Laplacian and biharmonic operators in the flow field. At the node i , the
undivided Laplacian of w can be approximated as the summation of the differences of w along all
edges meeting at i

(∇2w)i =
n∑

k=1
(wk−wi ) (8)

where n represents the number of edges meeting at i . Since the biharmonic operator can be viewed
as a Laplacian of another Laplacian, the artificial dissipation term can be expressed as

Di (w)=
n∑

k=1
�k{ε2k(wi −wk)−ε4k(∇2wi −∇2wk)} (9)

where ε2 and ε4 are adaptive coefficients designed to switch on enough dissipation where it is
needed, and � is a factor proportional to the maximum eigenvalue of the Euler equations. In the
summation of Equation (9), the coefficient ε4 is set be zero for all the edges intersecting with
the solid wall. As presented in the next section, this cancellation of the action of biharmonic
operator for the wall-intersected edges will simplify the evaluation of flow variables at exterior-
dependent points. Numerical experiments show that the cancellation does not affect the stability
of the scheme.

The spatial discretization transforms (1) into the following set of coupled ordinary differential
equations:

�i
dwi

dt
+Qi (w)−Di (w)=0, i=1,2,3, . . . ,N (10)

where N is the number of the computational mesh nodes, Qi (w) represents the discrete approxima-
tion to the convective fluxes, and Di (w) represents the artificial dissipation terms. These equations
are integrated in time using a five-stage, hybrid, time-stepping scheme proposed in [19].

5. EVALUATION OF FLOW VARIABLES AT EXTERIOR-DEPENDENT POINTS AND
IMPLEMENTATION OF WALL BOUNDARY CONDITIONS BY LOCAL DFD

According to spatial discretization and introduction of the artificial dissipation term presented
in Sections 3 and 4, the calculation of the vector of conservative variables at any mesh point
inside the solution domain depends on the conservative vector and its undivided Laplacian at each
‘surrounding’ point connected to this point by an edge of tetrahedron. For an edge intersecting
with the wall boundary, the interior end point is a computed node at which all flow variables are
obtained by solving the governing equations, and the exterior end point is one of the dependent
points of this computed node. All these kinds of interior computed nodes near the wall boundary
have at least one dependent point outside the solution domain as shown in Figure 2. Setting
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1

2

4

3

F
Fluid 

Wall 

Solid 

1: Interior computed node  

2, 3, 4: Exterior dependent points

F: Fictitious point of 2 

Figure 2. Interior computed node, exterior-dependent points and fictitious point.

ε4=0 in (9) for wall-intersected edges means that only evaluation of the conservative vector at the
exterior-dependent point is required in calculations, and there is no need to compute its undivided
Laplacian. The key process of the DFD method is how to evaluate the functional values at the
exterior-dependent points, and in this process the wall boundary conditions will be imposed.

In the present work, the values of flow variables at the exterior-dependent points are extrapolated
from the flow field or determined by the local simplified flow equations, along the normal direction
to the wall boundary. Since all flow variables are approximated by piecewise linear functions in
the spatial discretization, the linear extrapolation will be reasonable. Therefore, some points on the
normal to the boundary and inside the solution domain should be constructed for the extrapolation
and the solution of the local simplified flow equations. These points may not be the mesh points;
hence, we call them fictitious points.

For a given exterior-dependent point, the mirror image to wall is chosen as its fictitious point
as illustrated in Figure 2. Suppose that this fictitious point locates in a tetrahedron �∈Th . If the
four vertices of � are all inside the solution domain, it can be used to evaluate the flow variables
at the fictitious point by the linear interpolation. This interpolation tetrahedron is denoted by �I.
With such a definition of fictitious point, in the treatment of an impermeable wall for inviscid flow
computations, the normal component of the velocity at the exterior-dependent point can be set to
be antisymmetric with respect to the normal component of the velocity at the fictitious point in
the reference frame. This prescription avoids the overshoot of an extrapolated velocity when the
wall boundary is very close to the interior computed node.

If the four vertices of �I are not all inside the solution domain, the values of the flow variables at
the exterior vertex are not known currently. This case appears frequently in the DFD computations.

To evaluate the normal component of velocity at the fictitious point, a new interpolation tetra-
hedron �I /∈Th should be constructed locally. A simple example is illustrated in Figure 3. The
construction can be done easily by linking the interior vertices of � to one of the intersection
points of edges with the wall boundary so that the formed tetrahedron contains the fictitious point
and has a maximum volume value. The normal component of velocity at intersection point can
be obtained directly from the known body movement. This division of some wall-intersected cells
is only for the construction of interpolation tetrahedrons to evaluate the normal velocity at some
fictitious points, and not applicable for solving governing equations.
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Fictitious point of 4

1

2

Fluid 

4

W

3

Iτ : 123W 
Solid

Figure 3. Local construction of the interpolation tetrahedron �I �∈Th .

In the case of �I /∈Th , the values of pressure, density, and tangent components of velocity at the
wall-intersection points are not known, thus the values of these variables at the mirroring fictitious
point cannot be determined. To overcome this difficulty, we construct another fictitious point for a
given exterior-dependent point. In this case, the point that satisfies: (1) on the normal to the wall
that passes the exterior point; (2) the four vertices of the tetrahedron containing this point (i.e. the
interpolation tetrahedron) are all inside the solution domain; (3) closest to the wall is defined as
the additional fictitious point for the evaluation of pressure, density, and tangent components of
velocity at the exterior-dependent point.

Thus, the flow variables at the four vertices of the interpolation tetrahedron �I either take the
current computed values or are determined from the body movement. By the linear interpolation
over �I, the values of flow variables at the fictitious point can be obtained. For example, the pressure
at the fictitious point is computed by

p f =
4∑

k=1
�k(x f , y f , z f )pk (11)

where the summation over k refers to the four vertices of the interpolation tetrahedron �I, and
�k(x f , y f , z f ) is the test function for each vertex at the fictitious point.

The values of flow variables at the fictitious points, at each time step, are used in conjunction with
the wall boundary conditions and the simplified flow equations near the wall to update continually
the values of flow variables at the exterior-dependent points.

Now, we discuss the evaluation of flow variables at an exterior-dependent point in detail. For
three dimensions, an intrinsic coordinate system proposed by Serrin [18] can be taken at first.
This local system is composed of the streamwise direction, the normal direction, and the binormal
direction. The normal direction is the direction normal to the streamwise direction and parallel to
the plane containing the streamwise direction and the gradient of pressure. The plane containing
the streamwise direction and the normal direction is the so-called ‘osculating plane’ in which
three-dimensional flow behaves locally like an axisymmetric flow [22]. A direct application of
this system in DFD is difficult because the normal direction is generally not the wall normal.
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Figure 4. Local system for the evaluation of flow variables at an exterior-dependent point. �:
wall normal direction; 	: surface streamwise direction; 
: direction perpendicular to the �–	

plane; D: exterior-dependent point; F: fictitious point; W: intersection point.

To remove this difficulty, we introduce a modified local system, used by Dadone and Grossman in
the ghost-cell method [12], as shown in Figure 4. This local system is composed of the wall normal
direction �, the surface streamwise direction 	, and the direction 
 perpendicular to both � and 	.
Moreover, the surface streamwise direction is approximated by the projection of the streamwise
direction at fictitious point to the body surface. With such a local coordinate system, the local
DFD can be implemented easily in three dimensions.

For inviscid flows, ud , vd , andwd , the Cartesian components of velocity at the exterior-dependent
point D are determined in such a way that the locally total velocity q at the intersection point
W is tangent to the wall (i.e. the non-penetration condition). Because there is no shear stress in
the inviscid flows, we can assume that in the small region near the wall, the tangent components
of velocity do not change in the normal direction. With the non-penetration condition and the
assumption, the normal and tangent components of the velocity at an exterior-dependent point can
be obtained by

q�
d =−q�

f (12)

q	
d =q	

w =q	
f (13)

q

d =q


w =q

f =0 (14)

In (12)–(14), q�
d represents the normal component of the velocity at the exterior-dependent point

D, and the other variables, such as q	
d and q	

f , have a similar meaning as q�
d . With (12)–(14), the

Cartesian components of the velocity at an exterior-dependent point can be computed by

ud =q�
d�x +q	

d	x (15)

vd =q�
d�y+q	

d	y (16)

wd =q�
d�z+q	

d	z (17)

where �x , �y , and �z are the Cartesian components of the direction vector �, 	x , 	y and 	z the
Cartesian components of direction vector 	.
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The pressure at the exterior-dependent point, pd , is determined from the simplified normal
momentum equation in the local �−	 plane, as suggested in [12] for steady flows and here extended
to unsteady flows: (

�p
��

)
w

=−
(

�q�

�t

)
w

+�w

(q	
w)2

R	
w

(18)

In the above equation, R	
w is the radius at the intersection point W of the curvature of the line that

is formed by the intersection of the wall surface with the plane �−	. For steady flow computations,
the temporal derivative (�q�/�t)w is equal to zero. �w, the density at W , is approximated by the
following interpolation:

�w = ��wd� f +�� f w�d
�� f d

(19)

where ��wd represents the distance between W and D, �� f w and �� f d have a similar meaning.
By discretizing the partial derivative in the LHS of (18) and using (13) and (19), we obtain

p f − pd
�� f d

= (��wd� f +�� f w�d)(q
	
f )

2

�� f d R
	
w

(20)

With the assumption of an adiabatic wall (�T/��)w =0, i.e. [�(p/�)/��]w =0, we have

pd
�d

= p f

� f
(21)

Substituting (21) into (20), pd and �d are given by

pd = Bp f , �d = B� f (22)

with

B= R	
w p f −� f ��wd(q

	
f )

2

R	
w p f +� f �� f w(q	

f )
2

(23)

There exist some special exterior-dependent points at which the flow variables may be multi
valued as outlined in [11, 12]. These points are associated with the thin body, the width of which is
smaller than two or one grid interval. The technique for the treatment of these multi-valued points
has been first suggested by Dadone and Grossman [12] and can also be considered an extension
of that used in two-dimensional flow conditions [5]. The difference is that the body may be thin
in several directions in three-dimensional conditions.

The first case is that the flow variables at an exterior-dependent point inside the solid body
may have several values corresponding to the computed nodes locating on different sides of the
body to implement the wall boundary conditions on the different sides. This case happened usually
when the body width is smaller than two grid intervals. The second case is that there exist some
exterior-dependent points inside the solution domain. When the body width is smaller than one
grid interval, a computed node near the wall may also be the exterior-dependent point of another
computed node on the opposite side of the wall to reflect the corresponding boundary effect.
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Conversely, the latter computed point is also the exterior-dependent point of the former. Thus,
each flow variable at such an interior point has two values: the real value is obtained by solving
governing equations, and the other is obtained by the extrapolation from the flow field to reflect
the opposite boundary effect.

In the present work, the values of flow variables at a fictitious point are obtained by the
linear interpolation over a tetrahedron and the basis function is the piecewise linear function.
Evaluating flow variables at fictitious points in this way is consistent with spatial discretization
of the governing equations. However, as we have discussed at the beginning of this section, in
the DFD computations, the mirroring fictitious point may locate in a wall-intersected tetrahedron.
Linear extrapolation from one of the neighboring interior tetrahedrons of this wall-intersected
tetrahedron is not consistent with spatial discretization of the governing equations, and the resultant
errors will be larger than those with spatial approximation for the governing equations. Higher-
order extrapolation may improve the accuracy but it is more complicated. Therefore, in such a
situation, we have to construct a local tetrahedron only for the evaluation of normal velocity at
the mirroring fictitious point, and choose another fictitious point (not the mirror image) for the
evaluation of density, tangential velocity, and pressure at the corresponding exterior-dependent
point. Alternatively, we may use RBFs [15–17, 23] as interpolants to evaluate flow variables at
fictitious points by using a local cloud of scattered nodes surrounding the fictitious points.

6. MESH REFINEMENT

In the present work, tetrahedral meshes are obtained by refining the hexahedral cells of Cartesian
meshes. Cartesian meshes require that any grid clustering near the body must be maintained to the
farfield and the direct application of Cartesian meshes will lead a very large node number in the
calculation of flows around a body. In order to address this problem, we generate a coarse Cartesian
mesh at the beginning, and then an initial uniform tetrahedral mesh is constructed by refining
hexahedral cells of this coarse Cartesian mesh. The final tetrahedral mesh used in calculations is
obtained by refining the initial tetrahedral mesh gradually from the body surface to the farfield.

To refine the initial mesh, new nodes are placed within the volume of the original tetrahedral
cell. The child cells resulting from such a division should be topologically similar to the parent cell,
and increase in grid stretching and skewness compared with the parent cell should be avoided as
much as possible. In this work, we adopt the adaptive algorithm for tetrahedral grids proposed by
Vijayan and Kallinderis in [24]. Slight improvements have been made in eliminating the hanging
nodes that appear on the edges of the interface between the divided and undivided cells. We flag
the tetrahedrons for refinement in terms of their distances to the body surface, and therefore the
refined mesh is geometrically adaptive.

In the mesh refinement, new nodes are introduced in the middle of edges of the flagged
tetrahedrons. Each edge is divided into two edges and each face into four faces after introducing
three edges in the interior of the divided face, as shown in Figure 5. This results in four corner
child cells. Then, the interior octahedron is divided into four tetrahedrons by the shortest diagonal
of the octahedron, which results in the formation of cells with the lowest aspect ratio.

After the division of the flagged cells, the resulting grid contains a number of cells that are left
with hanging mid-edge nodes on some of their six edges due to the refinement of the neighboring
cells. These interface cells constitute the border between the divided and the undivided cells. The
interface cells can be eliminated by the following two ways.
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Figure 5. Division of a tetrahedron into eight sub-cells.
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Figure 6. Division of a tetrahedron with all three hanging nodes on the same face.

6.1. Directional division

Two interface configurations appear frequently. Those two cases are treated separately with a
simple technique. In the case where all of the hanging nodes appear on the edges of the same
face, the interface cell is directionally divided into four children as shown in Figure 6. In the case
of a hanging node appearing on only one of the six edges, the interface cell is henceforth divided
into two children as shown in Figure 7. Directional cell division results in a significant reduction
in the number of interface cells.

6.2. Centroidal node division

By a simple method, all the other different interface configurations can be treated in a general
way. A new node is inserted at the center of the interface cell. Then, all of the four corner nodes
are connected to the added node and the cell is now divided into four sub-cells as illustrated
in Figure 8. The four sub-cells, on the edges of which there are still some hanging nodes, have
three configurations. There are three, one, or two hanging nodes on the edges of the same face,
respectively. The first two configurations are the same as those in the case of directional division
shown in Figures 6 and 7, and can be divided in the same way. The sub-cell of the last configuration,

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:970–986
DOI: 10.1002/fld



982 C. H. ZHOU AND C. SHU

1

32

5
4

Figure 7. Division of a tetrahedron with only one hanging node.
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Figure 8. Division of a tetrahedron by the added centroidal node.
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Figure 9. Division of a sub-cell.

which has two hanging nodes on the same face, can be divided into three sub-sub-cells as illustrated
in Figure 9. Whether 1 and 6 or 3 and 5 are connected depends on the distances between them.
The two points with shorter distance are connected.
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7. NUMERICAL EXPERIMENT

Here, we present some numerical results for an ONERA M6 wing and display the comparison
of the present results with experimental data and numerical results in the literature to provide a
validation to the local DFD method described in this paper for the three-dimensional compressible
Euler equations. This configuration has been widely used as a benchmark case for evaluating the
accuracy of Euler solvers.

This wing has a leading-edge sweep angle of 30◦, an aspect ratio of 3.8, and a taper ratio of
0.562. The airfoil section of the wing is the ONERA ‘D’ airfoil, which is a symmetrical section with
10% maximum thickness-to-chord ratio. The test case we took is the transonic flow over the wing
configuration delimited by a symmetry plane, at a Mach number of free stream M∞ =0.84 and
an angle of attack �=3.06◦. In Reference [25], Schmitt and Charpin have given the experimental
data (Reynolds number, Re=1.814×107). Under the specified flow conditions, Euler results can
be compared with Navier–Stokes results or experimental results.

The computational domain is bounded by a rectangle box with boundaries at −5�x�7,
−6�y�6, 0�z�6, where x is the streamwise direction, z is the spanwise direction, and y is the
direction perpendicular to x–z plane (the wing planform). The characteristic length, namely the
semispan, is 1.0. The geometrically adaptive mesh has 157 304 computational nodes. The mesh
size near the wing surface is 1

80 .
The lift and drag coefficients obtained by the current local DFD Euler solver are CL=0.291,

CD=0.014. These values agree well with the Euler results reported by Mavriplis in [26], where the
values CL=0.290, CD=0.013 are obtained on an adaptive unstructured mesh with 173 412 nodes.
Figure 10 depicts the computed pressure contours on the wing upper surface, and the �-shock
pattern has been well captured.

In Figure 11, the computed pressure coefficients on the wing surface at six spanwise sections
are presented and compared with other Euler results [24], Navier–Stokes results [27], and the
experimental data [25]. Overall, the present results are close to the experimental data and reference
numerical results. There is a slight difference of suck peaks between the present DFD results and the

Figure 10. Computed pressure contours over the M6 wing upper surface.
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Figure 11. Comparison of pressure coefficients on the M6 wing surface.
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experimental data. It may be attributed to two facts. One is that our mesh is not fine enough in the
region near the leading edge. The mesh we used is obtained by refining a uniform Cartesian mesh
gradually from the wing surface. Another fact is that the present governing equations are Euler
equations and the viscosity effect has not been considered in the numerical simulation. By checking
Figure 11 carefully, we can find that the pressure peak difference also exists in the referenced
Euler results on the solution-adaptive tetrahedral grid, but disappears in the Navier–Stokes results.
On the top surface of 44% spanwise section, the Navier–Stokes result has a better agreement with
the experimental data, but both the Navier–Stokes solver and DFD Euler solver over-predict the
expansion region. On the top surface of 65% spanwise section, the positions of the foreshock
predicted by all solvers are later the experimental result. On the top surface of 80% spanwise
section, both solvers do not capture the foreshock well. These differences of shock location and
strength between numerical results and experimental data, which can also be frequently found in
other papers, should mainly be attributed to the interaction of shock wave with turbulent boundary
layer. The discussion about them exceeds the range of the present work.

8. SUMMARY

In this paper, we extend the local DFD method developed in [5] to the simulation of three-
dimensional compressible flows governed by Euler equations in conservative form. According to
[12], the concept of the so-called ‘modified osculating plane’ is adopted, with which the local
DFD can be easily implemented in three dimensions. Geometrically adaptive tetrahedral mesh
was employed for three-dimensional calculations to avoid grid clustering near the body to be
maintained to the farfield. Since the boundary can be superimposed upon computational meshes,
this method has all the advantages of non-boundary-conforming methods.

The local DFD method for three-dimensional compressible inviscid flows was validated by
its application to simulate transonic flows over the ONERA M6 wing. The computed surface
pressure distributions at different spanwise locations compare favorably well with the published
experimental data and numerical results using body-fitted grid. This demonstrates the ability of
the DFD method to simulate practical three-dimensional flows.
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